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Turbulent boundary layer to single-stream shear
layer: the transition region
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This communication presents the results and conclusions of an experimental study of
the near-separation region of a single-stream shear layer. The momentum thickness
at separation (x = 0) was θ0 = 9.6 mm, with Reynolds number Reθ =4650. Boundary
layer separation was caused by a sharp 90◦ edge. Detailed single- and multi-
point measurements of the velocity field were acquired at the streamwise locations
0 < x/θ0 < 100. This represents the transition region between two of the canonical
turbulent shear flows: the zero-pressure-gradient turbulent boundary layer and the
single-stream shear layer. From the viewpoint of a separating boundary layer, the
results describe how the turbulent flow reacts to a sudden change in wall boundary
conditions. From the viewpoint of the developed shear layer, the results describe
the transition to the self-similar region. The data acquired suggest that the initial
shear layer instability occurs in the region very near separation (x ≈ θ0), and that
it involves only the vorticity filaments which originate in the near-wall region of
the upstream boundary layer. This ‘near-wall region’ roughly defines the origin of
a narrow wedge-shaped domain that was identified from the velocity statistics. This
domain is termed the ‘sub-shear layer’. The statistics of the velocity field in the region
bounded by the sub-shear layer and the free-stream flow were found to represent
the normative continuation of the upstream boundary layer. The sub-shear layer
has been found to exhibit many of the standard features observed in fully developed
shear layers. For example, velocity measurements on the entrainment side of the shear
layer indicate that large-scale motions with spanwise coherence were observed. The
streamwise dependence of the dominant frequency, convection velocity, and spanwise
velocity correlation have been documented in order to characterize the sub-shear
layer phenomenon.

1. Introduction
A single-stream shear layer is of interest as one of the canonical turbulent shear

flows and it is also important in technological applications. The region near the
separation edge of the shear layer can serve as the archetype flow for a backward-
facing step, a jet exhausting from a plane surface, and other flows characterized by the
interaction between a separating primary flow and the induced secondary or entrained
flow. This communication presents the results of an experimental investigation of the
near-separation region with a turbulent boundary layer at separation. A schematic
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Figure 1. Schematic representation of near-separation region.

representation of the area of interest and the adopted coordinate system is shown in
figure 1. Measurements were acquired in the region 0 <x/θ0 < 100, where θ0 represents
the momentum thickness of the boundary layer at x = 0. This study is distinctive with
respect to the existing literature because of the relatively high Reynolds number
(based on θ0) of the separating boundary layer (Re = 4650), and because the large
θ0 value (9.6 mm) permitted detailed measurements to be acquired in the region very
near separation.

The domain of interest can be viewed as the transition region between two well-
studied canonical flow fields: a flat-plate turbulent boundary layer and a single-stream
shear layer. This leads to two possible perspectives from which to view the acquired
data. The first perspective is to view the region shown in figure 1 as a boundary
layer with a sudden change in the wall boundary conditions. The data then serve
to answer the question: how does a turbulent boundary layer react to this abrupt
‘removal’ of the wall boundary condition? A related question was addressed using a
moving-wall geometry in Hamelin & Alving (1996). It will be demonstrated in the
following sections of this paper (in agreement with the results of Hamelin & Alving)
that the ‘outer region’ of the separated boundary layer remains statistically identical
to the upstream (canonical) boundary layer for several integral length scales in the
streamwise direction. The insensitivity of the outer region of the boundary layer
to the sudden ‘removal’ of the bounding wall is note-worthy, and this insensitivity
is expected to be of interest to researchers who study boundary layers as well as
separated flows.
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In the second viewpoint the near-separation region is considered to be the
developing region of the shear layer. The data then answer the question: how does a
self-similar single-stream shear layer develop from its parent boundary layer? Implicit
in the concept of self-similarity is the idea that the initial conditions are ‘forgotten’
(Townsend 1975). The near-separation region has been extensively studied for the case
of laminar boundary layers at separation. For example, Ho & Huerre (1984) provide
a thorough review and a substantial list of both single-stream and two-stream shear
layer references. Many of these studies examine the near-separation region using linear
stability theory. The results of the present work will be compared and contrasted to
this established theory.

There have been a number of investigations which have looked at shear layers with
various inflow conditions. See, for example, Bradshaw (1966), Foss (1977), Hussain &
Zedan (1978), Slessor, Bond & Dimotakis (1998), Browand & Latigo (1979), and
Dziomba & Fiedler (1985). These studies were conducted with laminar and turbulent
(tripped) separating boundary layers with Reynolds number (Reθ ) less than 1000.
These references report experiments in which the upstream boundary condition is
modified and the ‘effect’ of this modification on the developed downstream flow is
documented. A common characteristic of these studies is that the near-separation
region was not described in detail.

In summary, the present research effort serves to fill a gap in the present
understanding regarding the physical mechanisms which take place when a single-
stream shear layer originates from a relatively high-Reynolds-number boundary
layer. The experimental programme was divided into four parts. The first was
a characterization of the boundary layer at the separation point (x = 0). These
experiments utilized single- and multiple-sensor hot-wire probes to document many
of the single-point statistics of the velocity and vorticity fields. These data serve to
document the inflow boundary conditions to the control volume of interest. The
results of the second group of experiments document the single-point statistics of the
velocity in the region 0<x/θ0 < 100. In the third group of experiments, single- and
multi-point measurements of velocity were used to document many of the features
of the unsteady irrotational flow on the low-speed entrained side of the shear layer.
In the fourth part, a rake of eight hot-wire sensors was used to document the
spanwise (z) correlations of the velocity field at various (x, y) locations. The results
of the four groups of experiments will be described following an overview of the
experimental methods and the single-stream shear layer facility. Note that the results
from the experiments will be presented with limited discussion. The paper ends with
a list of conclusions and with a more detailed discussion of the results. This format of
presentation was chosen so that the discussion could be provided from the perspective
of incorporating all of the experimental data.

2. Experimental methods and apparatus
2.1. Single-stream shear layer facility

A large single-stream shear layer facility at the Turbulent Shear Flows Laboratory
at Michigan State University was used for the present experiments. A schematic
representation is shown in figure 2. Note that the height ‘out of the page’ of the entire
flow system was 1.94 m.

A constant-speed blower (not shown) moves air from the laboratory to the
point labelled Primary inflow. The air then passes through the flow conditioners.
These consist of a 2m wide honeycomb (3 mm cell × 25 mm length) section and three
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Figure 2. Schematic of the single-stream shear layer facility. Note that view is rotated 90◦

with respect to figure 1.

turbulence control screens with 8 wires/cm. A contraction is located 1.2 m downstream
of the screens. This reduces the width of the flow area to 1.1 m. The boundary layer
plate begins at the end of the contraction. A small gap (0.12 m) between the end of
the contraction and the leading edge of the boundary layer plate allows the removal
of the contraction boundary layer. This point of the tunnel and all downstream
locations are at nearly zero gauge pressure with respect to the laboratory ambient.
The primary flow moves through the 0.98 m wide boundary layer development section.
The boundary layer plate is 5.74 m long; the free-stream velocity was 7.1 m s−1. The
boundary layer plate was laminated with 1 mm thick PVC sheeting to provide a
smooth boundary condition. The boundary layer plate terminated at the separation
point which was created using a machined 90◦ edge. The free-stream velocity was
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measured during all experiments by monitoring the differential pressure drop across
the planar contraction. This pressure difference was acquired during all experiments
and it was found to vary by less than 0.5% over the duration of the experimental
programme.

The shear layer test section begins at the separation edge. The primary flow moves
through the 9.75 m test section length with constant velocity (U0). An entrainment flow
stream was directed perpendicular to the primary flow stream on the low-speed side
of the shear layer. This flow was created using four 1.2 m diameter axial propeller-type
fans with an AC speed controller. This fan type is designed to move large volumes of
air at relatively low pressure rise (∼25 Pa). For this reason, bypass holes were created
such that the fans would operate at design conditions to prevent unsteadiness from
blade stall. That is, most of the air moved by the fans is recirculated back to the
laboratory. The ‘plenum’ between the fans and the flow conditioning is maintained
at a pressure which is slightly higher than the atmospheric value. The entrainment
flow conditioning is identical to the primary flow conditioning. The lateral location of
the entrainment screen closest to the shear layer is y = −2.75 m, using the coordinate
system shown with origin at the separation edge.

The entrainment fans were adjusted to provide the correct entrainment rate for
a shear layer at zero pressure gradient. This was verified using hot-wire sensors
in the primary flow at several streamwise locations. That is, the fans were adjusted such
that ∂U0/∂x ≈ 0. The resulting entrainment velocity was found to be ve = 0.035U0 ≈
0.25 m s−1.

The exit of the tunnel was open to the laboratory. The nearest obstruction to the
outflow was a building wall located 6.1 m from the tunnel exit. The ceiling and floor
of the laboratory were respectively located approximately 2 m above and below the
shear layer test section. These conditions provided sufficient space to turn the exiting
flow without disturbing the shear layer at the end of the test section.

2.2. Instrumentation

Time series of the fluid velocity were measured using single- and multi-sensor hot-wire
probes. The sensor elements were made from 5 µm diameter tungsten wire. The total
wire length was 3 mm, with a 1 mm region on each side that was plated with 50 µm of
copper to support the 1mm active portion of the wire. The sensors were controlled
using DISA 55M anemometers with a heating ratio of 1.7. The frequency response
was always greater than 20 kHz. All sensors were calibrated before (pre) and after
(post) each experiment with a maximum of three hours between calibrations. Unless
the pre and post calibrations agreed to 2% or better the data were retaken.

Measurements acquired in the separating boundary layer also include two-
component (u, v) data acquired using an X-wire probe. Additionally, vorticity time
series data were acquired using a compact four-wire probe. A full description of these
probes and processing algorithms can be found in Foss & Haw (1990), Wallace &
Foss (1995), and Morris (2002). A thorough review of hot-wire techniques is given by
Bruun (1985).

3. Experiment 1: characterization of the boundary layer
The study of the near-separation region began with detailed measurements that were

acquired very near to the separation point (x ≈ 0). These data and their interpretation
serve to document the inflow boundary conditions to the separated flow discussed
in the following sections. The investigation of the boundary layer was divided into
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two experiments. First, measurements to identify possible effects of separation on
the boundary layer upstream of the separation edge were executed. Second, point
statistics in the boundary layer were measured with enough detail to ensure that a
nearly canonical zero-pressure-gradient boundary layer existed and that it compared
well with standard measurements as reported in the literature.

3.1. Shear layer to boundary layer ‘communication’

The purpose of this experiment was to answer the question: do the pressure
fluctuations from the shear layer significantly alter the characteristics of the boundary
layer at separation?. In other words, do the large-scale spanwise coherent motions
in the shear layer cause a measurable change in the boundary layer characteristics
upstream of separation? The answer to this question for the condition of a laminar
boundary layer at separation is discussed in Holmes, Lumley & Berkooz (1992). Their
results suggest that the shear layer does influence the separating boundary layer for
laminar separation. In contrast, it will be argued from the present data that this is
not true for the present (high-Reynolds-number turbulent) boundary layer.

It is known (see e.g. Browand & Trout 1980) that the velocity field in the irrotational
fluid near a planar shear layer is unsteady. This is a result of the large-scale motions
which exist within the turbulent region. If these motions also affect the boundary
layer flow before separation, it is intuitively reasonable that a non-zero correlation
between velocities in the boundary layer and in the entrainment stream would provide
evidence that the shear layer was affecting the boundary layer. It is noted, however,
that statistical quantities such as linear correlations do not indicate causation, and
should only be used as an indicator that a mechanistic coupling exists between the
two regions.

Simultaneous hot-wire measurements were taken in both the entrainment stream
and the boundary layer flows to test this hypothesis. A single hot-wire sensor was
traversed in the entrainment stream near the separation point with the sensor axis
aligned with the z-direction such that the components of velocity in the (x, y)-
plane would be recovered. Note that the w component should be quite small in the
essentially two-dimensional entrainment region. The entrainment probe was traversed
through a range of locations in the region 0 <x/θ0 < 20, y < 0. An X-wire probe was
simultaneously placed in the boundary layer in the region 0 <y/θ0 <10, −4 <x/θ0 < 0,
such that the u and v components of velocity were recovered. Time series data from
the X-wire and the entrainment probe were recorded for 40 seconds at 5000 Hz. The
standard normalized cross-correlation as a function of τn, the discrete time delay
variable, is defined as

R(τn) =
v1(tn)v2(tn + τn)

ṽ1ṽ2

. (1)

The variable v1 is the u or v component of velocity measured from the X-wire, v2 is
one of the signals from the entrainment probes, and the overbar represents the time
average. The tilde represents the RMS value of that signal.

The results of these calculations have shown nearly zero correlation values for all
of the above measurement locations. That is, there was no measurable correlation
between the two signals for any of the spatial locations measured. A second calculation
was performed in which a low-pass filter was used to allow only frequencies less
than, for example, fc =100 Hz (where fcθ(0)/U0 = 0.135) to be correlated. This
type of filtered cross-correlation has been shown to be effective in detecting non-
zero correlations in highly turbulent flow fields which contain broad-band spectral
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Figure 3. Boundary layer mean velocity. The y+ =0 point (+) on the inset figure was added
for clarity, based upon the no-slip condition. Note that U0/uτ = 25.5.

information; see e.g. Naguib (1992). These cross-correlations, however, were also
found to be negligible in magnitude for all of the acquired data.

It is inferred from the above observations that the upstream ‘communication’ is
not measurable in a separating turbulent boundary layer. It is therefore reasonable
to assume that the measurable characteristics of a high-Reynolds-number turbulent
boundary layer upstream from a fixed separation point with zero pressure gradient
are identical to those which would exist if the separation were not present. These
conclusions are further supported by the results of the following section, which
presents detailed velocity measurements for x ≈ 0. As indicated earlier, this result is
in contrast to observations described in Holmes et al. (1992) for a separating laminar
boundary layer. Further discussion will be given in the conclusions section.

3.2. Boundary layer statistics near x = 0

The single-point statistics of the boundary layer in the region very near separation
were measured using a single hot-wire sensor. The probe was calibrated and traversed
through the boundary layer at the streamwise locations x/θ0 = −0.1 and +0.1. Each
data point was acquired at a sampling frequency of 5000 Hz for t = 30 s, where
tU0/θ0 = 2.2 × 104. The sensor was aligned in the z-direction, such that the magnitude
of the velocity in the (x, y)-plane was recovered:

q(t) =
√

u2 + v2. (2)

Most authors do not make the distinction between u and q in single-probe hot-wire
measurements. This is because the v component is typically small compared to u in
wall-bounded flows. The emphasis on q in the present work is important because the
surveyed region (x > 0, y < 0), will be dominated by the v component of velocity. In
contrast, for the region (x ≈ 0, y > 0) the approximation q ≈ u is nearly exact.

The time average and standard deviation of the velocity measurements will be
denoted by q̄ and q̃ respectively. The profiles q̄(x = ±0.1θ0, y) are shown in figure 3.
Note that these data are normalized by the viscous units (uτ =

√
τw/ρ for velocity and
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ν/uτ for y, where τw is the time-averaged wall shear stress, ρ density and ν viscosity)
in log–linear coordinates. The wall shear stress was computed from the slope of a
linear fit of the data points closest to the wall at x/θ0 = −0.1. Note that the closest
location to the wall is y+ ≈ 3.2, or roughly y ≈ 150 µm, which is far enough from the
wall to ignore proximity effects in the hot-wire readings. A typical log–linear region
can be observed through the range 40<y+ < 800. This region roughly approximates
the standard fit q+ =2.5 ln(y+) + 5.5. The present data are best represented by
q+ =2.3 ln(y+) + 6.7 for 30 <y+ < 500.

It is of interest to compare the two velocity profiles which have been acquired. The
measured x/θ0 = ±0.1 mean values agree for all locations where y+ > 5 (y > 0.25 mm).
The inset to the figure shows the deviation of the data from the two traverses for
y+ < 5 in linear coordinates. The deviation between the two profiles indicates a strong
streamwise gradient in velocity given that the x displacement of the sensor for the
two traverses was 0.19θ0 (1.8 mm). For example, �q̄/�x ≈ 400 (s−1) at y = 0.

The integral statistics of interest, which were calculated from the mean profile, were
the momentum thickness θ = 9.62 mm, and the displacement thickness δ∗ = 12.6 mm.
The Reynolds number based on momentum thickness was Reθ = 4650. Additional
parameters are the friction coefficient and the shape factor, which are defined as
Cf =2(uτ/U0)

2 and H = δ∗/θ , respectively. These were determined to be Cf = 0.00295
and H = 1.31.

The q̃(x = ± 0.1θ0, y) profiles in viscous units are shown in figure 4. It is observed
that the majority of the y+ > 0 region is invariant in the q̃ data, as observed in figure 3.
Specifically, q̃ is invariant for y+ > 30, whereas q̄ is invariant for y+ > 5. Note that
the maximum value for the x/θ = −0.1 data is q̃/uτ = 2.74. Other researchers (for
example Klewicki & Falco 1990) have found the peak in the fluctuation intensity
to be ∼2.9 for similar Reynolds numbers. This discrepancy can be explained by
the relatively large sensor length used in the present study. Specifically, the hot-wire
length in viscous units was λ+ =20ν/uτ , whereas Klewicki & Falco (1990) recommend
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a sensor length of less than 10v/uτ in order to avoid spatial averaging of the velocity
fluctuations.

The spanwise vorticity in the boundary layer is also a variable of interest.
The magnitude of the time-averaged vorticity in viscous units is approximated
by |ω+

z | = ∂q̄+/∂y+. The slope of the mean velocity profile shown in figure 3 was
computed; see figure 5. The standard deviations of the fluctuations in spanwise
vorticity, ω̃z, were measured using the four-wire vorticity probe; these data are also
shown on figure 5. Note that the spatial resolution of the probe is established by the
distance between the two straight wires. This is nominally 1 mm (20 viscous wall units
in the present study). The measured values of ω̃z are consistent with the data presented
in Klewicki, Falco & Foss (1992) and references therein. These data show that
both positive and negative values of vorticity were realized for y+ > 20. This can be
compared with the near-wall region wherein only one sign of vorticity that is consistent
with that of the mean shear is observed. The vorticity fluctuations normalized by the
local mean value: ω̃z/|ωz| have been plotted for the region 10 <y+ < 800 as the inset
to figure 5. Note that the values of ω̃z/|ωz| are uncertain for y+ > 800 because both
the numerator and denominator are approaching zero. The data show that the relative
fluctuation levels of vorticity increase approximately exponentially (linear in semi-log
coordinates) throughout the ‘log region’ (10 < y+ < 600) of the boundary layer. The
comparison of the two representations of ω̃z in figure 5 are instructive in showing
that the absolute fluctuation levels of vorticity decrease with increasing y+, yet the
values are increasing with respect to the local mean vorticity.

Qualitative aspects of the vorticity filament topology can be inferred from these
measurements and the solenoidal condition of the vorticity vector field. At a small
distance from the wall the filaments are necessarily perpendicular to the local shear
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stress vector, and parallel to the surface. The observation that ωz(t) < 0 in the near-wall
region implies that the near-wall filament topology is relatively simple. In contrast,
the measurements farther from the wall (y+ ∼ 20) indicate that the vorticity filaments
must be sufficiently complex or ‘twisted’ such that vorticity values of both sign are
realized at a given y location. Farther from the wall, the statistics of the velocity and
vorticity fields exhibit many of the properties of isotropic turbulence; see, for example,
Saddoughi & Veeravalli (1994) for examples of velocity statistics which support local
isotropy in the log region of boundary layers. These features of the vorticity field will
be considered in the following sections which describe the near-separation region of
the boundary layer.

4. Experiment 2: point statistics and the ‘sub-shear layer’
A flow visualization image of the near-separation region is shown in figure 6. This

digital image was acquired using a Kodak 1k × 1k camera and a nominally 1 mm
thick laser light sheet oriented in the (x, y)-plane. The boundary layer flow was seeded
using an oil-fog system located upstream of the boundary layer leading edge. The
unmarked entrainment flow provided the contrast between the two fluid streams.
Specifically, the marked primary fluid appears white, and the clean entrainment fluid
appears dark in the figure. Note the scale and orientation with respect to figure 1.
Specifically, recall that the boundary layer thickness δ is of order 10θ . This picture
is not repeatable in detail because the flow is turbulent in this region. However, the
general features represented and described are common to all realizations.

Several interesting observations can be made from this visualization. First, a
streakline from the separation point can be easily identified. This shows a ‘wavy’
or ‘flag-flapping’ type of behaviour. The first disturbance to the streakline occurs at a
streamwise location of x ≈ θ0. The ‘size’ of this motion appears to be of order 0.5θ0.
This observation is consistent with the ‘communication’ results described previously.
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That is, it would seem unlikely that the pressure fluctuations from this first disturbance
or the downstream disturbances would influence the upstream boundary layer given
their relatively small scale. Note also that the asymmetry of the shear layer is evident
from the movement of the marked fluid into the entrainment region (y < 0), whereas
very little clean fluid is observed for y > 0. The visually apparent ‘growth’ of the shear
layer is clearly at a length scale which is significantly smaller than the boundary layer
thickness.

Based on these observations, and equipped with the data to be presented in
this and subsequent sections, several distinct regions of the flow field have been
identified. These are shown schematically in figure 7. These regions and their defining
characteristics will provide a conceptual framework and vocabulary which will be
useful in describing the results to follow. The canonical turbulent boundary layer is the
region which exhibits stochastic values of the velocity field that reflect the evolution
of a boundary layer that is still attached to a flat plate. The sub-shear layer represents
the turbulent region where the flow is measurably different from that if the bounding
wall were present. The region marked significant irrotational fluctuations represents
the domain where measurements of the velocity fluctuations exhibit essentially no
high-frequency (small-scale) motions. It is inferred that the unsteady aspects of these
motions are driven only by the unsteady pressure field created by the shear layer.
Lastly, the transition between the sub-shear layer and the developing shear layer are
not well defined. Hence no such boundaries are drawn in figure 7.

Point statistics were acquired using a single hot-wire probe which was traversed
across the shear layer at 12 streamwise locations. The data were acquired at 5 kHz for
60 s. If the characteristic velocity is taken as U0/2, and if the shear layer width is taken
to be 6θ(x), then the 60 s represents 500 to 2000 shear layer widths for the 12 locations.
The sensor was aligned in the z-direction to recover the time series of q as described
in the previous section. Note that in the high-speed free stream the sensor responds
to q = u =U0, and in the entrainment stream the sensor responds to q = v = ve. The
time-average velocity (q̄) and the standard deviation of the fluctuations (q̃) were then
computed from the time series values. The mean velocity is shown in figure 8 as an
‘x, y plot’, and in figure 9 as a contour plot. The values of q̃ are shown in figures 10
and 11 in x, y and contour formats, respectively. Note that the boundary of the
sub-shear layer region, identified qualitatively in figure 7, can be roughly described
by the q̃/U0 = 0.087 contour in figure 11.

A striking feature observed in these data is the nearly streamwise-invariant
boundary layer statistics. That is, the gradients ∂( )/∂x that are known to be small
in boundary layers are also very small downstream of separation. As a specific
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example, the mean profiles are identical to the boundary layer profile for y/θ0 > 2
in the range 0 < x/θ0 < 29. The profiles of q̃ are streamwise invariant for y/θ0 > 4 in
the range 0 <x/θ0 < 29. These features are shown by the nearly streamwise-invariant
contours in figures 9 and 11, or by close examination of the individual profiles in
figures 8 and 10. Several histograms of velocity are given in figure 12 for the points:
(x/θ0, y/θ0) = (0.73, 2), (7.2, 2) and (19, 2). Although differences can be noted, the
similarity of these histograms provides a specific example of the nominal streamwise
invariance of the moments of the velocity field.

It is noteworthy that these results are consistent with those of Hamelin & Alving
(1996). In that reference, a moving belt was used to remove the inner layer of an
Reθ = 2800 turbulent boundary layer in order to study the stochastic evolution of
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Figure 10. RMS of velocity for 0 < x/θ0 < 100.
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Figure 11. Contour plot of velocity RMS q̃/U0.

the outer scales. The present work is similar in that the streamwise evolution of the
boundary layer is measured after an abrupt change in wall boundary conditions. In
the case of the moving-wall boundary condition, the mean flow field was streamwise
invariant for y/θ0 > 2 in the range 0 <x/θ0 < 34 (see figure 5 of Hamelin & Alving).
The RMS of the velocity fluctuations at a given y location was streamwise invariant
for y/θ0 > 4 in the range 0 <x/θ0 < 30 (figure 7 of Hamelin & Alving). These regions of
streamwise invariance are nearly identical to those realized in the present experiment.

Two variables of interest were calculated from the mean velocity profiles: the
momentum thickness of the shear layer θ(x) and the maximum slope of the mean
velocity. The calculation of θ requires the integration of the streamwise component of
velocity across the shear layer. Because the magnitude of the velocity was measured
as opposed to strictly the u component (see equation (2)), an arbitrary cut-off of
q̄/U0 = 0.05 was used to end the integration on the low-speed side. This is a common
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technique used by, for example, Ali et al. (1985) and Hussain & Zaman (1985).
These results are shown in figure 13. The growth rate in the region x/θ0 > 60 was
found to be 0.035 as measured previously by Foss (1994). Note that Hussain &
Zaman (1985) found a linear growth rate of 0.032. The second variable derived from
the point statistics that will be of interest in subsequent sections is the maximum
slope of the velocity profile. These data are shown in log–log format in figure 14
for streamwise locations (1.8 < x/θ0 < 550). This extended domain shows that the
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function (dq/dy)max ∼ 1/x0.79 agrees reasonably well throughout the sub-shear layer
region as well as farther downstream.

A variable of interest is the maximum value of q̃ obtained at a given streamwise
location. This information was obtained from the data shown in figure 10, and plotted
in figure 15. The most interesting feature of these data is that the local maximum
value is realized at x/θ0 ≈ 2. This peak occurs at a lateral position of y/θ0 = 0.15.
Previously, the existence of a local maximum has only been observed in shear layers
with a laminar separating boundary layer, whereas the tripped or high-Reynolds-
number boundary layers lead to a monotonic increase in q̃; see Foss (1977) and
Hussain & Zedan (1978). The present data support the concept that the sub-shear
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layer region very near the separation point is a viscously dominated flow region which
shares many of the characteristics of low-Reynolds-number separations. It is inferred
that this detailed feature of the flow field near the separation edge was previously not
observed given the small dimensions of θ0 in those experiments.

As a final note regarding the sub-shear layer, the observations made also provide
insight into the transition length required in order to obtain a self-similar shear layer.
Specifically, it is known that shear layers which originate from a laminar boundary
layer require a streamwise development of 1000θ0 in order to be self-similar (Bradshaw
1966). In contrast, self-similarity is observed in shear layers which originate from a
turbulent boundary layer at streamwise locations less than 150θ0, as observed in the
present experiments, as well as in the literature (see e.g. Hussain & Zaman 1985).
Dimotakis & Brown (1976) suggested that the streamwise distance to self-similarity is
related to the wavelength of the initial stability (λ0), and not to the initial momentum
thickness (θ0). They also indicate that the case of turbulent separation will probably
have shorter length scales compared to θ0. This can be expressed as the ratio λ0/θ0.
This value has been found to be λ0/θ0 ≈ 10 for laminar separation, and λ0/θ0 ≈ 1 in
the present study (see figure 6). The present result clearly supports the inference made
by Dimotakis & Brown. Further discussion will be given in the conclusions section.

5. Experiment 3: shear layer diagnostics from entrainment region measurements
A feature of the single-stream shear layer is the ubiquitous large-scale coherent

motions. These motions are characterized by a correlation length in the spanwise
(homogeneous) direction that is many times larger than the local shear layer thickness.
The existence, physical makeup, and dynamic significance of these large scales are
still topics of debate and research. The origin of these motions is believed to be the
inflectional instability of the shear layer velocity profile. The flow visualization and
point statistics described in the previous section indicated that this instability does
not influence the entire separating boundary layer. Rather, it is suggested that the
influence of these motions is limited to the region identified as the sub-shear layer.
A simple method of detecting these large-scale motions is to acquire velocity time
series in the irrotational flow field near the shear layer. Many studies have made use
of the fact that the time signature of velocity in both the high-speed and low-speed
streams can be used to identify features of the large-scale motions within the shear
layer; see for example, Browand & Weidman (1976). Koochesfahani et al. (1979),
Browand & Trout (1985), and Narayanan & Hussain (1996). The efficacy of this
technique is based upon the pressure fluctuations, which are mechanistically linked
to the large-scale motions. This leads to easily detectable fluctuations in the velocity
field of the irrotational flow which bounds the vortical shear layer.

The observations made in the entrainment stream will be described in three
subsections: the streamwise dependence of the convection velocity of the coherent
motions, the spectral properties of the entrainment stream, and the frequency and
scaling of the initial instability.

5.1. Convection speed of the coherent motions

A variable of interest is the convection velocity Uc of the spanwise motions. Many
investigators of both single- and two-stream shear layers have found the convection
velocity to be the mean velocity of the two streams with equal density. See for
example, Dimotakis (1986) and references therein. The ratio would be predicted to be
Uc/U0 = 0.5 in the single-stream shear layer. The time-averaged convection velocity
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Figure 16. Convection velocity of spanwise motions. The break in the x-axis is used to show
the x/θ0 < 120 region in more detail.

was measured from time series data of two hot wires placed in the entrainment stream
with a streamwise displacement �x. The lateral locations where q̃(y) ≈ 0.015U0 were
determined to have significant signal amplitude in the irrotational region. The time-
delayed cross-correlation of the two hot-wire signals was computed from these time
series to locate the time delay to the first observed positive peak: �t . The average
convection velocity is defined as Uc = �x/�t .

Figure 16 shows the normalized convection velocity 2Uc(x)/U0. Of interest is the
low value of 0.54 near x = 0 and the increase to the expected value of 1.0 for
x/θ0 > 120. It is inferred from this result that only the vorticity from the near-wall
region participates in an inflectional instability in the region very near separation,
and that the percentage of the vorticity (on average) that participates in the shear
layer instability increases in the x-direction. The former inference is clearly supported
by the independent visualization image of figure 6. Additional statements can be
made to support this inference. The first observation is that the velocity gradients are
very steep in the region x = y = 0 which lead to length scales which are considerably
smaller than the local integral scales. Since the length scale of the most amplified
motions will scale with the velocity gradient at the point of inflection, it is reasonable
that only the fluid in the y ≈ 0 region will participate in the instability.

A second argument to support this assertion is related to the vorticity field of the
turbulent boundary layer upstream of separation. It is known that the wall confines
the movement of the vorticity filaments in the near-wall region, and as a result they
are relatively organized compared to the outer portion of the boundary layer (see
Klewicki et al. 1992). Note also the large values of ω̃z/|ωz| in the outer region in
figure 5. It can be inferred from these observations that the ‘organized’ near-wall
vorticity participates in the first instability, whereas the ‘disorganized’ outer motions
do not.

It is possible to calculate how much of the vorticity participates (on average)
in the first instability based on the above observations. Given the relatively small
contribution of the y component of velocity to the vorticity in the near-wall region,
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Figure 17. Velocity spectra of entrainment for the 12 streamwise locations measured.

the mean streamwise velocity can be written as

q̄(y) =

∫ y

0

ω̄ dy. (3)

As described above, the convective velocity of the first instability was found to be
0.27U0 from figure 16 near x =0. The ‘scale’ of velocity in this context (2Uc = 0.54U0)
can be interpreted as an ‘apparent free stream’ speed as observed by the vorticity
filaments which participate in the first instability. The location where q̄/U0 = 0.54 was
found to be y+ ≈ 42 at x = 0, see figure 3. Evaluating equation (3) at y+ = 42 shows
that 54% of the time-averaged vorticity which separates from the boundary layer
participates in the first instability. The increase in the coherent-motion convection
velocity shown in figure 16 indicates that an increasing amount of the time-averaged
vorticity from the boundary layer participates in the coherent motions as the flow
evolves in the streamwise direction.

5.2. Spectral properties of the entrainment stream

The spectral properties of the entrainment stream in proximity to the active shear
layer were used to investigate the coherent motions of the sub-shear layer region. The
power spectral density (the Fourier transform of the autocorrelation) was computed
for a single lateral (y) location at each of the 12 (x > 0) streamwise locations identified
previously in figure 8. The lateral positions where q̃(y) ≈ 0.015U0 were selected on
the low-speed side where the velocity fluctuations appeared irrotational. These data
are shown in log–log format in figure 17. The amplitude of each data set was shifted
vertically in order to distinguish the data sets on one figure. These data show a
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Figure 18. Sample of the autocorrelation function in the entrainment stream at x/θ0 = 7.17.

distinct local maximum, or ‘hump’, in the spectrum for all streamwise locations with
the exception x/θ0 = 0.73. For example, the hump at x/θ0 = 29.5 occurs at 10 Hz.
Nearly identical results for the range 37 <x/θ0 < 4800 can be found in Hussain &
Zaman (1985, hereafter referred to as H-Z). It can also be observed that the frequency
at which the local maximum occurs, fm, decreases with downstream distance. This
frequency can also be identified using the first peak of the autocorrelation function.
This leads to a similar, although not necessarily the same, identification of a preferred
frequency. Figure 18 shows an example of the autocorrelation function for x/θ0 = 7.17.
It should be noted that at all locations, the ‘hump’ does not imply that the signal is
periodic. These humps should be interpreted only as a preferred frequency at that
streamwise location.

The frequency values fm (normalized by θ0 and U0) were calculated from both
the spectra and autocorrelations for the region 1.8 <x/θ0 < 650; see figure 19. The
frequency data from H-Z in the region 37 <x/θ0 < 4800 (taken from figure 5 of that
reference) are also shown in figure 19. Note that the boundary layer Reynolds number
at separation was Reθ = 428 in H-Z. The agreement is quite good in the overlap region
between these data sets, which indicates that the dimensionless frequency at these
x/θ0 locations is not a strong function of the Reynolds number of the separating
boundary layer.

The frequency data can also be made non-dimensional using the free-stream velocity
and the local momentum thickness. That is, the fm and the θ(x) values can be
combined to form a new variable defined as f ∗ = fmθ(x)/U0. These data are shown in
figure 20. The f ∗ value measured at the location x/θ0 = 600 is also shown on the figure.
The functional dependence of f ∗ can best be interpreted by considering the functional
dependence of both the momentum thickness and the frequency from the respective
curve fits of the data. Although the momentum thickness does not grow linearly in
the region very near separation, all streamwise locations shown in figure 13 can be
roughly approximated by

θ(x)

θ0

= 0.0312

(
x

θ0

)
+ 1.079. (4)



206 S. C. Morris and J. F. Foss

10–4

10–3

10–2

10–1

103102101100

x/θ0

0.133(x/θ0)–0.71

Autocorrelation results

Spectra results

Hussain & Zaman (1985)

~1/x

fmθ0

U0

Figure 19. Streamwise variation in peak frequency.

0

0.04

0.08

0.12

0.16

20 40 60 80 100
x /θ0

0.098

0.026

Values at
x /θ0=600

fm(x) / (du–/dy)max(x)

fm(x)θ(x)/U0

Figure 20. Non-dimensional frequency vs. x/θ0.

A fit of the frequency data is represented by

fmθ0

U0

=
0.133

(x/θ0)0.714
. (5)

Therefore, the dimensionless frequency becomes

f ∗(x) =
fmθ(x)

U0

= 0.0041(x/θ0)
0.286 + 0.143(x/θ0)

−0.714. (6)

Equation (6) is shown as the solid curve on figure 20. The two terms of equation (6)
represents two limiting regions of interest: the region very near separation, and the
behaviour for large x. The larger values of x/θ0 are clearly dominated by the first
term of equation (6). This equation would predict an f ∗ which is slowly increasing for
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large x/θ0 values because the momentum thickness grows linearly, and the exponent
of the frequency dependence is −0.71. This is in contrast to the expected result
that the dimensionless frequency would be constant. It is also noted that the largest
downstream distance measurement location provided f ∗(x/θ0 = 600) = 0.026. This is
somewhat (25%) larger than the value of 0.021 from the x/θ0 < 100 data, although
this difference is close to the uncertainty of the measurement. Note also that H-Z
measured a value of 0.024, although the uncertainty in those measurements seems to
be considerably greater given the scatter in the H-Z data.

The x dependence of f ∗ has two possible explanations: either the f ∗ values are
streamwise dependent for all x, or the shear layer is still ‘relaxing’ from the initial
upstream boundary conditions (i.e. the turbulent boundary layer). The second of these
explanations is likely to be the correct one. It can be observed from the H-Z data
in figure 19 that afm ∼ 1/x dependence approximates the data reasonably well for
x/θ0 > 1000, whereas fm ∼ 1/x0.71, as measured in the present data, seems to correlate
well with the H-Z data for x/θ0 < 1000. It is possible that the present shear layer
would also tend towards a 1/x dependence for larger x values given the agreement
with the H-Z data in the region where the data overlap.

The non-dimensional frequency in the limit of small x values is also of interest,
particularly with regard to the sub-shear layer described in the previous sections.
In terms of equation (6), the second term dominates the magnitude of f ∗ for small
x/θ0. This is because the frequency increases as x is decreased, and the momentum
thickness θ(x) approaches the value at separation (θ0). A preferred scaling might
be obtained by relating the frequency to the local maximum velocity gradient:
f ∗

grad(x) = fm/(du/dy)max . Note that this definition is equivalent to using the ‘vorticity
thickness’ scaling. These data are also shown on figure 20. This definition was
motivated by the fact that both variables used in the definition of f ∗

grad(x) follow a
power law ∼x−n as shown in figures 14 and 19. It can also be observed that the
exponent of the maximum velocity gradient, n= 0.79, closely matches the value 0.71
measured for the preferred frequency.

5.3. The initial instability

The frequency of the initial instability has been the focus of numerous studies (see
e.g. Ho & Huerre 1984). The understanding of how the boundary layer vorticity is
redistributed downstream of separation is of considerable interest both fundamentally
and technologically. Manipulation and periodic forcing of the boundary layer at
separation can take particular advantage of the first instability in order to control
the unsteady dynamics of the shear layer.

The near-separation region of a laminar shear layer is known to be unstable
to small-amplitude perturbations as described by the Kelvin–Helmholtz instability.
Linear stability theory has been used by many authors to understand and predict
the frequency and growth rate of the first instability. There are several important
assumptions of the linear theory which often include parallel flow, laminar flow with
infinitesimal disturbances, and a specific velocity profile such as a hyperbolic-tangent
function. Although these assumptions are not physically realized in any turbulent
shear flow, the theory predicts the frequency of the fundamental instability for various
geometries with marked success. The efficacy of this theory for shear layers and jets
was reviewed by Ho & Huerre (1984) and Thomas (1991). The Strouhal number of
the most amplified frequency is defined as St0 = fmθ0/U0. Note that some references
use the average velocity in the case of a two-stream shear layer. This would change
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Figure 21. Time series samples from x/θ0 = 0.73.

the definition by a factor of two; the referenced values have been divided by two
where appropriate for comparison to single-stream results.

In contrast, the effects of a turbulent boundary layer state and the Reynolds
number on the initial instability have not been extensively investigated. Although the
initial development region for laminar flow has received considerable attention, most
shear layer studies which have a turbulent boundary layer do not consider the initial
instability of the shear layer. Ho & Huerre (1984) comment that the most amplified
Strouhal number changes from 0.016 for a laminar flow to 0.022–0.024 for turbulent
flow as a result of ‘presently unexplained reasons’. The remainder of this section will
clarify their observation in terms of the sub-shear layer phenomenon.

The single-sensor hot-wire data described in the previous sections were used to
observe the frequency of the initial instability. Using the spectral information shown
in figure 17 it can be observed that the time-averaged spectra of velocity show a local
maximum at the streamwise locations x/θ0 � 1.87. Although these time serics are
not periodic, the local maximum is interpreted to represent the preferred frequency.
However, the lack of a local maximum in the spectra for x/θ0 = 0.73 does not imply
that a preferred frequency does not exist. The flow visualization shown in figure 6
indicates that the first instability occurs in this region. This has motivated a more
detailed examination of the time series data at this location to identify if a preferred
frequency can be identified.

Several segments of time series data are shown in figure 21. These data show that
pseudo-periodic motions do exist, although the frequency, phase and amplitude vary
considerably during a relatively short time period. This explains why the spectra
failed to show a local maximum value at a particular frequency. This result is also
physically reasonable given that the vorticity convected from the viscous region of
the boundary layer is highly unsteady and highly perturbed by the turbulence in the
‘log region’. An alternative approach to identifying a preferred frequency was taken,
using only short segments of the times series. Specifically, the time series data were
divided into 0.1 and 0.2 segments for analysis. The autocorrelation was calculated for
each of these segments. Several examples of these correlations are shown in figure 22
along with the autocorrelation of the full time record. The advantage of using the
short time autocorrelations is that a distinct local maximum occurred in many of
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Figure 23. Histogram of observed frequencies from short time autocorrelations.

the calculations, indicating a preferred frequency during that time segment. Local
maxima were found in 51% of the 0.1 s time series and 37% of the 0.2 s time series.
A histogram of the observed frequencies is shown in figure 23. The mean frequency
from the 0.1 s sampled was 130 Hz. The mean value from the 0.2 s samples was
146 Hz. These values are in nominal agreement with the value of 124 Hz obtained by
extrapolating the curve fit given by equation (5). This agreement adds confidence that
the coherent motions observed in the flow visualization at the location x/θ0 = 0.73 do
exhibit a preferred frequency.

The next step in the determination of St0 is to choose velocity and length scales to
non-dimensionalize the indicated frequency. The standard choice of U0 and θ0 would
not be appropriate since it is only the near-wall region that is participating in this
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first instability. It seems illogical to use, for example, the boundary layer momentum
thickness (θ0) to scale a phenomenon which does not involve the entire boundary
layer. The new scales of velocity and length will be Ueff and θeff to imply that it is the
effective velocity scale and the effective momentum thickness only that lead to the
first instability and the formation of the first coherent motions.

A logical choice for the velocity scale is Ueff = 0.54U0. This is justified by the
apparent convection velocity of the first instability shown in figure 16. The effective
momentum thickness of the sub-shear layer was determined by fitting the hyperbolic
tangent profile to the mean flow measurements acquired at x/θ0 = 0.73. The data were
fit to the equation

q(y)

U0

=
Ueff

2

[
1 + tanh

(
y

2θeff

)]
(7)

in the range 0 < q̄ < 0.54U0. The mean velocity data and equation (7) are in
good agreement over this range, which corresponds to |y/θ0| < 0.1; see figure 24.
Equation (7) was used to find θeff because the linear stability theory calculation
of the most amplified wavenumber is derived from the tanh profile. The effective
momentum thickness was determined to be θeff =0.5 mm (θ0/θeff = 19.2) by a least-
squares fit between the data points and equation (7). Finally, the values fm =130 Hz,
Ueff = 0.54U0 = 3.98 m s−1, and θeff = 0.5 mm lead to St0 = 0.0163. Although the
uncertainty of this measurement is estimated to be ±10%, this value is in excellent
agreement with both linear theory and all existing literature for shear layers originating
from laminar boundary layers.

Given the above observations, a more objective scaling of the initial frequency could
be used for turbulent separation. Specifically, the realization that only the near-wall
vorticity participates in the first instability implies that the wall scaling could be
used. That is, using the viscous wall units defined for the boundary layer upstream
of separation, the dimensionless frequency can be written as St+

0 = f0ν/u2
τ . For the

present data, St+
0 = 0.025. It remains a question of interest if this remains constant

at other turbulent Reynolds numbers. It is noted that the value computed (from the
Blasius solution) for laminar separation is St+

0 = 0.075.
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6. Experiment 4: spanwise correlation measurements
The statistical data presented thus far were acquired at a single spanwise location.

Because the flow is stochastically homogeneous, these data are representative of the
entire flow field excluding the sidewall boundary layers (z/θ0 ≈ ±90). In addition to
these data, it is of interest to document the multi-point spanwise correlation of the
velocity field. This interest originated from the velocity measurements taken on the
entrainment side of the shear layer which indicated that motions that exists within
the shear layer have sufficient coherence to be detected well into the irrotational
flow. The spanwise extent of these coherent motions is of considerable importance in
applications involving acoustics, fluid–structure interactions, etc.

The data were acquired using a rake of eight single-wire sensors aligned in the
z-direction. The sensors were equally spaced at �z/θ0 = 2.05. A schematic of the
rake and its orientation is shown in figure 25. These probes were traversed through
the near-separation region using the same (x, y) locations as those shown in figure 8.
The time series data were recorded for 60 s (tU0/θ0 = 4.4 × 104) at a data acquisition
rate of 5000 Hz at each spatial location.

The presentation of these results is divided into the two following sub-sections. First,
several short time segments of velocity from the low-speed side will be presented.
These data will help to orient the reader to the data acquisition procedures and
they will assist in the interpretation of the results. Secondly, data will be provided
from calculations of the zero-time-delay cross-correlation for the (x, y, �z) positions
measured.

6.1. Example realizations in the irrotational stream

Four streamwise locations were selected to provide example realizations from the
eight-wire rake: x/θ0 = 3.53, 12.0, 40.5, and 84.2. The velocity fluctuations are shown
as contour plots in figure 26(a–d). The abscissa represents the time elapsed from an
arbitrary starting point (i.e. when the A/D system was activated) and was not intended
to isolate any specific observed features. The time was non-dimensionalized using the
local value of the peak frequency as shown in figure 17; that is, λ≡ (time) × fm which
represents the data in terms of the integer number of averaged wave periods. Ten
wave periods are shown in these figures. Longer time records yield qualitatively similar
representations of the flow field. The contours show the fluctuating component of
velocity from all eight sensors normalized by the standard deviation of the respective
signals. The legend for the grey scale shows that light shading indicates positive
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Figure 26. Contour plots show magnitude of velocity fluctuations from eight sensors
normalized by the standard deviation of the respective velocity fluctuations. The contours
are interpolated between the eight discrete locations. The upper x, y plots show time
traces taken from wires located at z/θ0 = 2.05 and 12.4 for the same time period. The
correlation coefficient for these two q(t) signals from the full time record is indicated by
‘cc’. (a) x/θ0 = 3.53, y/θ0 = −3.7; (b) x/θ0 = 12.0, y/θ0 = −5.37; (c) x/θ0 = 40.5, y/θ0 = −10.9;
(d) x/θ0 = 84.2, y/θ0 = −19.6.

fluctuations in velocity, and dark shading negative fluctuations. For each of the
contour plots, the time traces from the wires located at z/θ0 = 2.05 and 12.4 are
shown for comparison.

Growth in the spanwise coherence of the entrainment velocity was observed as x/θ0

was increased from 3.53 to 84.2. Specifically, figure 26(a) shows clear evidence that
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Figure 27. Spanwise correlation coefficient of the data shown in figure 26.

the motions which led to these fluctuations do exhibit a coherence in the spanwise
direction, although the spatial extent is limited. Figure 26(b) could be described
similarly, although the spatial extent of the coherent motions has obviously ‘grown’.
It is instructive to reiterate the idea of the sub-shear layer when considering these
spanwise correlations. As a specific example, recall that at the streamwise location
x/θ0 = 12, the flow field for y/θ0 > 2 is stochastically identical to the boundary layer.
Therefore, the spanwise correlation of the motions is observed to be several times
larger than the local sub-shear layer thickness.

In order to directly contrast this large spanwise coherence with the boundary layer
flow, the correlation coefficient for these four locations as well as one position within
the boundary layer (at x = 0, y = 0.5θ0) are shown in figure 27. It is clear from these
measurements that the larger spanwise coherence is developed downstream of the
separation point. The correlation values are considerably larger in the low-speed
region near the sub-shear layer than in the boundary layer, even at small x/θ0

values.
The continued growth in coherence is also seen in figures 26(c) and 26(d), where the

irrotational fluid motion approaches that of a two-dimensional flow. These measure-
ments are similar to those of Bowand & Trout (1980, 1985). Twelve wires were placed
in the low-speed side of a two-stream shear layer facility in the Browand & Trout
investigation. These authors observed coherent velocity fluctuations in the irrotational
flow near to the active shear layer, with a correlation length scale that increased in
the streamwise direction. Also, the short time realizations of the velocity fluctuations
shown in Browand & Trout are qualitatively similar to those shown in figure 26.

6.2. Correlation coefficient data

The correlation coefficient R(�z) was calculated (as shown in figure 27) for each of
the (x, y) locations (see figure 8 for the x, y data points used). The domain of the
data set can be represented by the ‘volume’ of points (x, y, �z). The visualization of
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Figure 28. Spanwise correlation field at (a) x/θ0 = 3.53, (b) 12.0, (c) 40.6, (d) 87.2. The

contours represent the magnitude of q̄ ′(x, y, z)q ′(x, y, z + �z)/(q
′2).

these data was made possible by ‘slicing’ the volume in planes perpendicular to either
the x- or the z-direction. First, the streamwise locations x/θ0 = 3.53, 12.0, 40.5, and
84.2 (i.e. the positions used in figure 26) were selected. Figure 28(a–d) shows contours
of the correlation coefficient at these locations. The mean velocity profile is included
with each of the figures for reference. Figure 29(a–d) shows contours of R at specific
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Figure 29. Correlation coefficient (as defined in figure 28) at (a) �z/θ0 = 2.08, (b) 4.16,
(c) 6.24, (d) 8.32, (e) 14.5. Note that the solid boundary represents the spatial extent of
the measurements. The dashed boundary represents the region where urms/U0 > 0.01. The
measurement locations within this domain are identified by the grid. A schematic of the
boundary layer mean profile near x = y =0 is shown for reference.
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�z values. The solid boundary surrounding the contour plot represents the spatial
extent of the data acquisition. The dashed boundary represents the contour line where
the fluctuation levels are 1% of the free-stream velocity (see figure 11). Correlation
data are shown in the region where the standard deviation of the fluctuations exceeds
1% of U0.

Several important features of the flow field can be observed from these
measurements. First, the central region of the shear layer shows quite low spanwise
correlation values. This is in contrast to the low-speed irrotational flow measurements
which exhibit a large correlation length with respect to the local length scales.
Although it is apparent that the irrotational fluctuations are caused by the motions
existing in the turbulent fluid, the correlation magnitudes are diminished by the
presence of relatively large fluctuating velocities that can be attributed to small-
length-scale motions.

A second feature observed from these data is the difference between the high- and
low-speed sides of the shear layer. Specifically, the correlation length on the low-speed
side grows smoothly and continuously from the separation point, whereas the high-
speed side shows an abrupt chage in correlation values near x/θ0 = 55. These data
reinforce the inferred presence of the sub-shear layer, and they also provide insight
into how the sub-shear layer evolves into a fully developed shear layer. Specifically,
the vortical fluid which occupied the outer region of the boundary layer does not
participate in the instability which leads to the large-scale spanwise motions. At
increasing streamwise positions, additional vortical fluid is drawn in to ‘participate’
with the coherent motions. The dramatic change in the correlation field near x/θ0 ≈ 55
indicates that the motions have become strong enough to have a measurable effect on
the high-speed irrotational fluid. It is instructive that the time-averaged convection
velocity of the coherent motions at this location is approximately 82% of the final
value of 0.5U0 (see figure 16).

7. Conclusions with discussion
The experimental data described in the previous sections lead to a number of

observations about the transition from an attached boundary layer to a single-stream
shear layer. The significant difference between the present study and previous research
is the moderately high Reynolds number at separation (Reθ = 4650), and a relatively
large integral length scale (θ0 = 9.6 mm) which allowed excellent spatial resolution
of the measurements. In this section each main conclusion is listed, followed by a
discussion and interpretation of the relevant data sets.

(i) The stochastic properties of the boundary layer at separation (x = 0) appear to be
unaffected by the flow field downstream of separation.

This conclusion is supported by several of the experiments. First, the zero cross-
correlation magnitudes between velocities measured in the boundary layer and in
the entrainment stream is a strong indication that a coupling does not exist between
the two regions. The lack of correlation in the low-pass-filtered time series further
supports this result. The reported stochastic properties of the boundary layer show
that the moments of the velocity and vorticity fields are in good agreement with the
existing literature on flat-plate boundary layers without separation. If the shear layer
did have an effect on the boundary layer at separation, it was not apparent in any of
the point statistics or correlation measurements.

The streamwise invariance of the statistics in the outer region of the boundary layer
provides additional evidence to support this conclusion. In other words, not only do
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the shear layer fluctuations not affect the boundary layer at x =0, there is also no
measurable effect on much of the y > 0 region for a considerable length downstream.
This will be discussed further in (ii) below.

The fact that a high-Reynolds-number boundary layer which separates at a 90◦ edge
is not affected by the separation is important for several reasons. If the separation
region were to be modelled using a computational method, the upstream boundary
conditions could be specified at x = 0 by the stochastic properties of the approach
boundary layer. If this conclusion were not supported by the observations, then
the separated flow field would have been found to affect the stochastic properties
upstream of separation, and the inlet conditions to the computation would have to
be specified at some x < 0, rather than at x = 0.

It is likely that communication from the boundary layer to the shear layer is
dependent on the Reynolds number. Laminar and low-Reynolds-number turbulent
flows at separation are likely to be more sensitive to the perturbations caused by
the downstream motions. A future study of this topic could attempt to measure an
objective indication of the communication for a range of Reynolds numbers.

(ii) The outer region of the boundary layer is stochastically streamwise invariant for
several integral lengths downstream of separation.

This streamwise invariance of the boundary layer properties is evident in all of
the data identified above. For example, the plots showing statistics in figures 8–11
and 29 all show invariant properties of the flow in the region 0< x/θ0 < 50 at lateral
positions of y > 0.15x. This adds information to a body of literature which exists
on the topic of inner and outer scales in the boundary layer; see, for example
Klewicki (1989), Marusic & Perry (1990), and Hamelin & Alving (1996). The
present observations indicate that not only are the outer scales not dependent
on the local production of near-wall turbulence, but that the flow is not even
affected by the large-scale fluctuations of the shear layer measured in the y ≈ 0
region.

(iii) The separation region can be described as a ‘sub-shear layer’ in which only the
near-wall vorticity participates in the initial shear layer instability.

The region which defines the sub-shear layer is qualitatively evident in the flow
visualization image shown in figure 6. This may also be identified as the wedge-shaped
region roughly defined by urms/U0 > 0.087 on figure 11. Many of the salient features
that are associated with canonical shear layers have been identified in this region.
For example, it can also be observed that the ‘spread angle’ of the sub-shear layer is
equal to that of the fully developed shear layer. This can be quantified from the two
contour lines for which urms/U0 = 0.087 on figure 11. The normalized distance between
these lines, say, �y, can be expressed as �y/x. This was found to be 0.17 ± 0.01 for
5 < x/θ0 < 650. That is, the spread angle is the same in the sub-shear layer and the
fully developed shear layer.

An important feature of shear layers is the presence of coherent motions which
develop from the inflectional instability mechanism (see Ho & Huerre 1984 for
a review). These motions are known to move in the streamwise direction with a
well-defined convection velocity. In fully developed single-stream shear layers, this
velocity is known to be nominally 2Uc/U0 = 1.0. The convection velocity in the
sub-shear layer region is shown in figure 16. These data indicate a dramatic rise
in the convection velocity from 2Uc/U0 ≈ 0.54 at separation to a value near 1.0 at
x/θ0 = 120. It is inferred from these data that only the near-wall vorticity is ‘rolling
up’ or participating in the inflectional instability. A quantitative estimate of the
fluid domain which participates in the initial roll-up has been identified as that
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below the q̄/U0 = 0.54 isotach. Equivalently, this bound is given by y+ < 42 for the
present (Reθ = 4650) boundary layer. As the sub-shear layer grows into the outer
part of the boundary layer, more of the vorticity is incorporated into the coherent
motions thereby increasing both the width of the sub-shear layer and the convection
velocity.

The present understanding of the vorticity field within a turbulent boundary layer
is consistent with the current findings. That is, the stochastic and instantaneous
properties of the motions which define the inner and outer scales of the boundary
layer are significantly different. The near-wall motions are described by, for example
Adrian, Meinhart & Tomkins (2000), and Panton (2001). In these references, the
near-wall region is understood to be composed of groups of coherent motions which
define localized shear layers. These result in ‘vortex packets’ which evolve into the
outer scales of motion. It is intuitively reasonable that the near-wall region with
a high level of organization of vorticity would be subject to inflectional instability
immediately downstream of separation. In contrast, the motions farther from the
wall are usually considered to be more disorganized and not closely correlated with
the motions very near to the wall. The current measurements of spanwise vorticity
fluctuations at x = 0 support this viewpoint. It is therefore reasonable that these outer
motions would not participate in the roll-up phenomenon.

(iv) The recognition of the sub-shear layer allows a physical explanation for why
shear layers with a turbulent boundary layer at separation approach self-similarity at
smaller x/θ0 values than shear layers with a laminar separation.

The streamwise location where the flow field becomes self-similar has been found to
be dependent on the state and Reynolds number of the boundary layer at separation.
For example, Bradshaw (1966) recommends a value of x/θ0 > 1000 for self-similarity
given a laminar separation. Hussain & Zaman (1985), Bruns (1990), and the present
study have found that x/θ0 > 100 is sufficient for the mean velocity to exhibit self-
preservation when the separating boundary layer is turbulent.

These differences can be explained in terms of the length scales of the turbulent
vs. laminar boundary layers. Dimotakis & Brown (1976) suggested that it is not the
downstream location as defined by a number of original integral length scales (e.g.
x/θ0) that is important for the establishment of a self-similar condition. Rather, it is
the number of ‘interactions’ between the large-scale motions of the flow. The number
of interaction will depend on the ratio of the streamwise location to the spacing
of the initial disturbance. Specifically, the number of interactions m(x) is estimated
(equation (14) of Dimotakis and Brown) to be

m(x) = log2(x/l0) (8)

where l0 is the spacing of the initial disturbance. For a laminar boundary layer at
separation, the criterion x/θ0 > 1000 is equivalent to a value of m ≈ 4. In the present
study the stream-wise location x/θ0 = 100 corresponds to a value of m between 6 and
7, given that the spacing of the initial disturbance was l0 ≈ θ0. This small value of
initial disturbance length compared with θ0 is a direct result of the presence of the
sub-shear layer.

(v) The dimensionless frequency of the initial instability agrees with linear stability
theory when appropriate effective velocity and length scales are identified.

The measurement and prediction of the dimensionless frequency of the initial
stability has received considerable attention in the literature; see, for example, Ho &
Huerre (1984) and Thomas (1991). This focus is a result of the universal nature of
the initial instability in a variety of shear layer and jet flow fields. Additionally,
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linear theory has been quite successful in the prediction of this dimensionless
frequency for many experiments with laminar boundary layers at separation. However,
differences in the measured frequencies have been found in shear layers with turbulent
boundary layers at separation. The present study has shown that these differences
are a result of the different length and velocity scales that exist in a turbulent
boundary layer. Specifically, a laminar boundary layer can be fully characterized
by the free-stream velocity and momentum thickness. In contrast, a turbulent
boundary layer has outer scales (free-stream and momentum thickness) and inner
scales (uτ and ν/uτ ). The data presented suggest that only the near-wall vortical
fluid participates in the initial instability at this Reynolds number. It is then quite
reasonable that the outer scales would not be functionally related to the measured
frequencies.

(vi) Preferred frequency and spanwise correlation measurements have shown that the
characteristic large-scale motions observed in self-similar single- and two-stream shear
layers are present in the sub-shear layer region.

Several investigators have studied the properties and importance of the largest
scales of motion in shear layers. These motions appear to have a large spanwise
coherence and a significant fraction of the total turbulent kinetic energy of the flow.
Experimentalists have sought to measure these features in order to better understand
their role and dynamic significance; see, for example, Hussain & Zaman (1985),
Browand & Weidman (1976), and Browand & Trout (1980, 1985).

The present experiments have found that a number of the features measured in
the self-similar regions of both two-stream and single-stream shear layers have also
been observed in the sub-shear layer region. For example, the preferred frequency
exhibited by both the sub-shear layer and self-similar shear layer can be described by
the relatively simple equation: fm ∼ x−0.71 (for x/θ0 > 1) as shown in figure 19. It can
be inferred that the physical mechanisms which lead to this preferred frequency are
present throughout the flow field downstream of separation. Note that the exponent
−0.71 is anomalous, in that the expected value from self-similarity is −1. The reason
for this is not clear, although Hussain & Zaman (1985) show that an exponent of −1
is not observed until downstream distances of x/θ0 > 300.

A second feature observed in the sub-shear layer region was the large spanwise
correlation values observed in the near-separation region. Specifically, figure 26(a)
shows evidence of spatial organization at the location of the first instability (x/θ0 ≈ 1).
The correlations then grow in spanwise extent in the streamwise direction. These
observations are consistent with observations made by Browand & Trout (1980, 1985)
in the self-similar region of a two-stream shear layer.

The observations noted above justify the terminology ‘sub-shear layer’. Specifically,
the region exhibits characteristics which are associated with self-similar shear layers,
while the prefix ‘sub’ denotes that the shear layer is growing adjacent to what appears
to be the outer region of a flat-plate boundary layer.

The single-stream shear layer facility was financially supported by the Ford
Motor Company, and primarily designed and fabricated by the first author. The
donation of the four entrainment fans from Aerotech, Inc. of Mason, MI is gratefully
acknowledged. Partial support for a Graduate Research Assistantship to S. C. M. was
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